
Fluid Simulation For Computer Graphics: A Tutorial in Grid Based and Particle
Based Methods

Colin Braley∗

Virginia Tech
Adrian Sandu†

Virginia Tech

Figure 1: Fluid Simulation Examples

Abstract

In this paper we present a tutorial on the implementation of both a
grid based and a particle based fluid simulator for computer graph-
ics applications. Many research papers on fluid simulation are read-
ily available, but these papers often assume a very sophisticated
mathematical background not held by many undergraduates. Fur-
thermore, these papers tend to gloss over the implementation de-
tails, which are very important to people trying to implement a
working system.

Recently, Robert Bridson release the wonderful book, ”Fluid Simu-
lation for Computer Graphics.[Bridson 2009]” We base a large por-
tion of our own grid-based simulator off of this text. However, this
text is very dense and theory intensive, and this document serves as
easy version for those who want to implement a simulator quickly.
Furthermore, Bridson’s text does not cover particle based methods,
like SPH, which are quickly becoming commonplace within the
graphics community. This work provides an introduction to SPH
as well.

Keywords: Fluids, Physically Based Animation, SPH, Grid Based

1 Introduction

2 Introduction

In the context of physics, the word fluid may mean something dif-
ferent than you might usually think. In physics, fluids fall into two
categories incompressible and compressible flow. Incompressible
flow is a liquid, such as water or juice. Compressible flow, on the
other hand, corresponds to gas such as air or steam. Compressible
flow is called compressible, because you can easily change the vol-
ume of this fluid. Note that there is no such thing as 100 percent
incompressible fluid. All fluids, even water can change volume to
some degree. If they could not, there would be no way to audi-
bly yell under water. However, we simply choose to ignore com-
pressibility in fluids like water that are nearly incompressible, and
instead we refer to them simply as incompressible.

There are many, many ways to simulate fluids. In graphics, the
most common two techniques are grid based simulations, and par-
ticle based simulations. (Very recently, new techniques such as the
Lattice-Boltzmann method have been introduced to graphics, but
they are beyond the scope of this paper.) Grid based simulations

∗e-mail: cbraley@vt.edu
†e-mail:sandu@cs.vt.edu

are typically highly accurate, although relatively slow compared
to particle based solutions. Particle based simulations are usually
much faster, but they typically do not look as good as grid based
simulations.

Some readers may not know the difference between grid based and
particle based simulations. The best description of this can be found
in page 6 of [Bridson 2009]. I will attempt to paraphrase this de-
scription here.

Fluid can be simulated from 2 viewpoints, Lagrangian or Eulerian.
In the Lagrangian viewpoint, we simulate the fluid as discrete blobs
of fluid. Each particle has various properties, such as mass, veloc-
ity, etc. The benefit of this approach is that conservation of mass
comes easily. The Eulerian viewpoint, on the other hand tracks
fixed points inside of the fluid. At each fixed point, we store quan-
tities such as the velocity of the fluid as it flows by, or the density of
the fluid as it passes by. The Eulerian approach corresponds to grid
based techniques. Grid based techniques have the advantage of hav-
ing higher numerical accuracy, since it is easier to work with spatial
derivatives on a fixed grid, as opposed to an unstructured cloud of
particles. However, grid based techniques often suffer from mass
loss, and are often slower than particle based simulations. Finally,
grid based simulations often do much better tracking smooth water
surfaces, whereas particle based approaches often have issues with
these smooth surfaces.

3 Governing Equations

Here we will describe the governing equations for fluid motion, and
also describe some of the special notation used in fluid simulation
literature. For someone only interested in a basic implementation,
this section can be skimmed with the exception of the final para-
graph on notation. However, for a full understanding of the why in
fluid simulation, this section should be read in full.

First, we will describe the general incompressible Navier Stokes
equations. We will attempt to intuitively describe the vector cal-
culus operators involved, and those without a knowledge of vector
calculus may wish to consult the appendix of [Bridson 2009] for
review. Here are the incompressible Navier Stokes equations:

∂~u

∂t
+ ~u+

1

ρ
∇p = ~F + ν∇ · ∇~u (1)

∇ · ~u = 0 (2)

In these equations, ~u is fluid velocity. The time variable is t The
density of the fluid is represented by ρ. For water, ρ ≈ 1000 kg

m3 .
The pressure inside the fluid (in force units per unit area) is repre-
sented by p. Note that p and ρ are different things(the first is the
Greek letter rho while the second is p). Body forces (usually just
gravity) are represented by ~F . Finally, ν is the fluid’s coefficient of
kinematic viscosity.

In our simulator, we currently don’t take fluid viscosity into ac-
count. For inviscid fluids like water, viscosity does usually not play
a large role in the look of an animation. However, if you wish to
include viscosity, see chapter 8 of [Bridson 2009]. The fundamen-
tal work on viscous fluids in graphics is [Goktekin et al. 2004], and
can be taken as a starting point for implementation.

When the viscosity term is dropped from the incompressible Navier
Stokes equations, we get the following set of equations:

∂~u

∂t
+

1

ρ
∇p = ~F (3)

∇ · ~u = 0 (4)

These equations are simpler, and they are the equations we will con-
sider for the rest of this paper. These are called the Euler Equations.

Lastly, we will quickly discuss some unique notation used in fluid
simulation. In simulation, we take small discrete time steps in or-
der simulate some phenomenon. Consider the velocity field ~u be-
ing simulated. In a grid based simulation, we store ~u as a discreetly
sampled vector field. However, we need some type of notation to
describe which grid element we are referring to. To do this, we use
subscripts like the following ~ua,b,c to refer to the vector at a, b, c
(Note that our indexing scheme is actually more complicated, but
this is discussed in the beginning of the grid based simulation sec-
tion.) However, we also need a way to indicate which timestep we
are referring to. To do this, we use superscripts, such as ~uk

a,b,c.
The previous equation would indicate the velocity at index a, b, c
at timestep k. While some would consider this an egregious abuse
of notation, this syntax is extremely convenient in fluid simulation.
In order to maintain clarity, we will explicitly state when we are
raising a quantity to a power (as opposed to indicating a timestep).
Furthermore, timesteps are written in bold (ab), whereas exponents
are written in a regular script (ab).

4 Grid Based Simulation

4.1 Overview

Here we will present a high level version of the algorithm for grid
based fluid simulation, assuming one wants to simulate n frames of
animation.

1. Initialize Grid with some Fluid

2. for(i from 1 to n)

Let t = 0.0

While t < tframe

Calculate ∆t

Advect Fluid

Pressure Projection (Pressure Solve)

Advect Free Surface

t = t+ ∆t

Write frame i to disk

Figure 2: Our 2D Eulerian Solver

4.2 Data Structures

While we have discussed Lagrangian vs. Eulerian viewpoints, we
have yet to define what exactly we mean by ”grid” in grid based
simulation. Throughout the simulation, we must store many dif-
ferent quantities (velocity, pressure, fluid concentration, etc.) at
various points in space. Clearly, we will lay them out in some form
of regular grid. However, not just any grid will do. It turns out that
some grids work much better than others.

Most peoples intuition is to go with the simplest approach: store ev-
ery quantity on the same grid. However, for reasons which we will
soon discuss, this is not a good approach. Back in the 1950’s the
seminal paper [Harlow and Welch 1965a] by Harlow and Welch de-
veloped the innovate MAC Grid technique. (Note that MAC stands
for Marker-and-Cell.) Among many things, this paper developed a
new way to track liquid movement through the grid, called marker
particles, and a new type of grid, a staggered grid. Marker particles
are still used in some simulators for their simplicity, but they are no
longer state of the art. However, the staggered grid developed by
Harlow and Welch is still used in many, many simulators.

This grid is called staggered because it stores different quantities at
different locations. In two dimensions, a single cell in a MAC Grid
might look as follows:

Figure 3: Two Dimensional MAC Cell

In three dimensions, a MAC cell would look like this:

Note that in these images p represents pressure, and ~u is velocity.
We see in these images that pressure is stored in the center of every
grid cell, while velocity is stored on the faces of the cells. Note that
these velocity samples are the normal component of the velocity at

Figure 4: Three Dimensional MAC Cell

each cell face. We will now describe why the grid is arranged in
this manner.

Consider a quantity w sampled at discrete locations
w0, w1, . . . wi−1, wi, wi+1, . . . wn−1, wn along the real line.
Imagine we want to estimate the derivative at some sample point i.
We must use central differences of some form. Immediately, one
can see that:

∂w

∂x i
≈ wi+1 − wi−1

2∆x
(5)

Recall from numerical analysis that this isO(∆x2) accurate. How-
ever, there is clearly a huge problem with this equation. It ignores
the actual value of w at wi! We clearly need a way to estimate this
derivative without ignoring the actual value at the point which we
are trying to estimate. We could forward or backward differences,
but these are biased and only O(∆x) accurate. Instead, we choose
to stagger our grid to make these accurate central differences work.
Our staggered central difference looks like this:

∂w

∂x i
≈
wi+ 1

2
− wi− 1

2

2∆x
(6)

This formula is still O(x2) accurate.

It turns out that, later on in our Pressure Projection stage, this stag-
gered grid is very useful, as it allows us to accurately estimate cer-
tain derivatives that we require.

However, this staggered grid is not without drawbacks. In order
to evaluate a pressure value at an arbitrary point which is not an
exact grid point, trilinear interpolation (or bilinear in the 2D case)
is required. If we want to evaluate velocity anywhere in the grid, a
separate trilinear interpolation is required for each component of the
velocity! Therefore, in 3D we need to to 3 trilinear interpolations,
and in the 2D case we need to do 2 bilinear interpolations! Clearly,
this is slightly unwieldy. However, the added accuracy makes up
for the complications in interpolation.

The above notation with half-indices is clearly useful since it
greatly simplifies our formulae. However, it is obvious that half-
indices can’t be used in an actual implementation. [Bridson 2009]
recommends the following formulae for converting these half-
indices to array indices for a real system:

p[i][j][k] = pi,j,k (7)

ux[i][j][k] = ui− 1
2
,j,k (8)

uy[i][j][k] = vi,j− 1
2
,k (9)

uz[i][j][k] = wi,j,k− 1
2

(10)

Therefore, for a grid of nx, ny, nz cells, we store the pressure in a
nx, ny, nz array, the x component of the velocity in a nx+1, ny, nz

array, the y component of the velocity in a nx, ny +1, nz array, and
the z component of the velocity in a nx, ny, nz + 1 array.

4.3 Algorithm

4.3.1 Choosing a Timestep

When simulating fluids, we want to simulate as fast as possible
without losing numerical accuracy. Therefore, we want to chose
a timestep that is as large as possible, but not large enough to desta-
bilize our simulation. The CFL condition helps us do this. The CFL
says to chose a value of ∆t small enough so that when any quantity
is moved from the center of some cell through the velocity field, it
will only move ∆h distance. This makes sense intuitively, seeing
as if a particle was allowed to move in any larger amounts than this
you would effectively be ignoring some parts of the velocity field.
Therefore, our equation for ∆t is as follows:

∆t =
∆h

~umax
(11)

As you can see, this requires us to know the maximum velocity in
the velocity field at any given time. There are 2 ways to get this
value, either by doing a linear search through all of the velocities,
or by keeping track of the maximum velocity throughout the sim-
ulation. These details are discussed in the Implementation section.
In computer graphics, we are often willing to sacrifice strict nu-
merical accuracy for the sake of increased computational speed. In
many situations, a practitioner is not worried about if the fluid being
simulated is one-hundred percent accurate. Instead, we want plau-
sible looking results. Therefore, in many applications you can get
away with using a timestep larger than that prescribed by the CFL
condition. For instance, in [Foster and Fedkiw 2001], the authors
were able to use a timestep 5 times bigger than that dictated by the
CFL condition. Either way, it is good practice to let the user be able
to scale the CFL based timestep by a factor of their choice, kCFL.
In this case, our equation becomes:

∆t = kCFL
∆h

~umax
(12)

f(v, vmax, vmin) = κmin(v − vmin)
κmax − κmin

vmax − vmin
(13)

In [Bridson 2009], a slightly more robust treatment of the CFL
condition is presented. In this text, Bridson suggests a modification
where ~umax is calculated with:

~umax = max (|~u|) +

√
∆h |~F | (14)

where ~F is whatever body forces are to be applied (usually just
gravity), and max ~u is simply the largest velocity value currently
on the grid. This solution is slightly more robust in that it takes into
account the effect that the body forces will have on the simulation’s
current timestep.

4.3.2 Advection

Central to any grid based method is our ability to advect both scalar
and vector quantities through our simulation grid. Advection can
be informally described as follows: ”Given some quantityQ on our
simulation grid, how will Q change ∆t later?” More formally, we
can describe advection as:

Qn+1 = advect(Qn,∆t,
∂Q

∂t

n

) (15)

In this section we will develop a computational function for
advect(Qn,∆t, ∂Q

∂t

n
).

Consider a P on our simulation grid. Using our central differencing
schemes described previously, we can trivially calculate ∂Q

∂t
. Using

this derivative, along with our grid information, we can develop
a technique to advect quantities through the grid. This technique
sometimes called a backwards particle trace. Since we are using
a particle, this is also commonly referred to as Semi-Lagrangian
Advection. It is important to note that no particle is ever created,
and the particle is purely conceptual. This is what leads to the Semi
in Semi-Lagrangian Advection.

Note that our algorithm can not be done in place, and requires an
extra copy of the pertinent data in our simulation grid. Our algo-
rithm works as follows:

1. For each grid cell with index i, j, k

Calculate − ∂Q
∂t

Calcluate the spatial position of Qi,j,k, store it in ~X

Calculate ~Xprev = ~X − ∂Q
∂t
∗∆t

Set the gridpoint forQn+1 that is nearest to ~Xprev equal
to Qi,j,k

2. Set Q = Qn+1

This algorithm is very simple, and fairly accurate. However, if you
are familiar with numerical analysis, you will recognize that this
algorithm uses the simple time integrator Forward Euler. This inte-
grator is not very accurate. We recommend at least using an integra-
tor such as RK2 or better (Runge Kutta Order-2). In our simulator,
we tested out 5 different integrators, and found the followingO(h3)
accurate scheme to work the best:

κ1 = f(Qn) (16)

κ2 = f(Qn +
1

2
∆tκ1) (17)

κ3 = f(Qn +
3

4
∆tκ2) (18)

Qn+1 = Qn +
2

9
∆tκ1 +

3

9
∆tκ2 +

4

9
∆tκ3 (19)

We will use this advection scheme throughout our simulator. One
common use is advecting fluid velocity itself. Another use is ad-
vecting temperatures or material properties in advanced simulators.

A careful reader might have noticed one issue with the advection
psuedocode. How would we perform an advection for a boundary

cell? This requires extrapolation for our MAC grid. In our expe-
rience, simply clamping grid indices is fine in the advection code,
but more advanced techniques do exist. However, we have found
that in practice these advanced extrapolation techniques do little to
visually augment the simulation.

4.3.3 Pressure Solve

So far, we have done nothing to deal with the incompressbility of
our fluids. In this section, we will develop a numerical routine such
that our fluid satisfies both the incompressibility condition:

∇ · ~un+1 = 0 (20)

as well as our boundary conditions:

~un+1 · n̂ = ~usolid · n̂ (21)

Additionally, this section finally allows us to show the reason for
our staggered MAC grid discussed in our previous section. First,
we will work out the individual equations to make a single grid
cell satisfy our two conditions above. Then, we will show how this
information can be used to make the entire grid incompressible.

Consider a 2D MAC cell at location i, j. Per the Euler equations,
on every step we must update our cells velocity by the following
equations. First, we present them in 2D where our velocity is rep-
resented by ~u =< u, v >.

~un+1

i+ 1
2
,j

= ~un
i+ 1

2
,j −∆t

1

ρ

pi+1,j − pi,j
∆h

(22)

~vn+1

i,j+ 1
2

= ~vni,j+ 1
2
−∆t

1

ρ

pi,j+1 − pi,j
∆h

(23)

Here are the equivalent equations in 3D for ~u =< u, v, w >.

~un+1

i+ 1
2
,j,k

= ~un
i+ 1

2
,j,k −∆t

1

ρ

pi+1,j,k − pi,j,k
∆h

(24)

~vn+1

i,j+ 1
2
,k

= ~vni,j+ 1
2
,k −∆t

1

ρ

pi,j+1,k − pi,j,k
∆h

(25)

~wn+1

i,j,k+ 1
2

= ~wn
i,j,k+ 1

2
−∆t

1

ρ

pi,j,k+1 − pi,j,k
∆h

(26)

Just in case these don’t seem complicated enough already, there is
another issue that must be attended to. These equations are only ap-
plied to components of the velocity that border a grid cell that con-
tain fluid. Getting these conditions correct was one of the hardest
things in the actual programming of our simulation, and we recom-
mend that an implementor try to first program this in 2D for easier
debugging.

A careful reader will also notice that these equations may require
the pressures of grid cells that lie either outside of the grid, or out-
side of the fluid. Therefore, we must specify our boundary condi-
tions.

There are two primary types of boundary conditions in grid based
simulation, Dirichlet and Neumann. We will use Dirichlet condi-
tions for free surface boundaries, indicating that we will specify the
value of the quantity at and boundary case. Therefore, we simply
assume that pressure is 0 in any region of air outside of the fluid.

The more complicated boundary is with solid walls. Here we will
use a Neumann boundary condition. Using the above pressure up-
date equations, we substitute in the solids velocity (0 for simula-
tions without moving solids), and then we arrive at a single linear
equation for our pressure. Rearranging our terms allows us to solve
for the pressure.

Now we will work out how to make our fluid incompressible. This
means that, for every velocity component on the grid, we want to
satisfy:

∇ · ~u = 0 (27)

Note that this divergence operator can be expanded to:

∇ · ~u =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
(28)

Therefore, it is clear that we simply want to find a way so that each
component of our spatial derivatives equals zero. Recalling our cen-
tral differences used earlier, we can approximate these divergences
using the following numerical routines, which use our finite differ-
ences developer earlier:

(∇·~u)i,j,k ≈
~ui+ 1

2
,j,k − ~ui− 1

2
,j,k

∆h
+
~vi,j+ 1

2
,k − ~vi,j− 1

2
,k

∆h
+
~wi,j,k+ 1

2
− ~wi,j,k− 1

2

∆h
(29)

Finally, we have all the quantities necessary for our pressure update.
We have developed equations for how the pressure affects the veloc-
ity, and we also have numerical equations to estimate the pressure
gradient. Using this information, we can create a linear equation
for the new pressure in every grid cell. We can then combine these
equations together into a system of simultaneous linear equations
which we can solve for the whole grid, and finally complete our
pressure update.

Eventually, we hope to end up with a system of equations of the
form:

A~x = ~b (30)

Every row of A corresponds to one equation for one fluid cell. In
this formulation, we will setup our matrix such that~b is simply our
negative divergences for every fluid cell. When written out, our
linear system takes the following form:

−Ω1 β1,2 . . . β1,n

β2,1 −Ω2

...
... −

. . . βn−1,n

βn,1 . . . βn,n−1 −Ωn

p1
p2
...

pn−1

pn

 =

−D1

−D2

...
−Dn−1

−Dn

(31)

In this equation, Di is the divergence through cell i, Ωi is the num-
ber of non-solid neighbors of cell i, and βij takes values based on
the below equation:

βij =

{
1 if cell i is a neighbor of cell j
0 otherwise.

(32)

Our matrixA has many unique properties we can exploit both in our
choice of linear solver and in our storage of A itself. It is immedi-
ately clear that A is sparse(most of its entires are zero), indicating

we should store is as a sparse matrix. Each row has at most 4 non-
zero entries in the 2D case, and 6 non-zero entries in the 3D case.

Furthermore, is is clear that A is symmetric. Every entry at index
i, j that is not on the main diagonal is defined by βi,j . Through
our definition of β, it is clear that βi,j = βj,i. Therefore, we only
need to store half of the entries in A. We use the following scheme
for storing our matrix. We store a main linked list, sorted first by
column, then by row. We store in each linked list node the following
< i, j, pij >. The column index is stored as i, the row index is
stored by j, and the corresponding pressure value is stored as p.
This storage scheme has many pros and cons. We are storing the
minimum amount of data, as we are storing only half of the matrix’s
non-zero entries. However, this memory saving comes at the cost
of speed. Accessing an arbitrary matrix entry is O(1

2
n) = O(n),

which can be slow. For small simulations where memory usage is
not a concern, we recommend including the option to store entries
in a dense matrix.

Finally, a reader highly experienced in numerical analysis will real-
ize thatA has a form that is common to many other matrices. In 2D,
A is often called the 5 point Laplacian Matrix, whereas in 3D it is
called the 7 Point Laplacian Matrix. Bridson recommends the Mod-
ified Incomplete Cholesky Conjugate Gradient Level 0 algorithm
[Bridson 2009]. Essentially, this is simply the conjugate gradient
algorithm with a special preconditioner designed for this particular
matrix. If the reader is interested in implementing their own con-
jugate gradient solver, we recommend the paper [Shewchuk 2007]
as a good starting point. However, in our implementation we are
not planning on dealing with enormous bodies of water so we im-
plemented both the regular Conjugate Gradient algorithm, as well
as Parallel Successive Over-Relaxation (Parallel SOR), and the Ja-
cobi Method. We found the parallel SOR to be faster than the con-
jugate gradient implementation, but this is probably because we
are not using a preconditioner. However, conjugate gradient was
slightly faster than the Jacobi method in our tests. Note that we
used OpenMP for parallelizing our SOR implementation. We hope
to add a preconditioner to our conjugate gradient implementation in
the near future.

While we have described the characteristics of the linear system to
solve, and what kind of solvers to use, we realize that most readers
will not want to spend their time writing a highly optimized im-
plementation of a specialized conjugate gradient solver. Therefore,
we will quickly direct the reader towards a few good linear algebra
packages that have routines that suit our purposes:

• Boost µBLAS

• SparseKit

• http://people.cs.ubc.ca/ rbridson/mpcg/ Open Source Matlab
Implementation of Specialized Form of Conjugate Gradient

4.3.4 Grid Update

4.4 Tracking the Water Surface In Grid Bases Simula-
tion

While we have discussed the basic mechanisms for a grid based
simulation, we have not discussed how to unify all these ideas into
a full working simulator that can output data that encapsulates the
position of a moving water surface.

There are many ways to approach the problem of tracking the move-
ment of water through a simulation grid. The simplest way, in-
troduced all the way back in Harlow and Welch’s seminal paper
[Harlow and Welch 1965b]. This approach is relatively simple,
and still quite useful. Here we store a collection of many discrete

marker particles in our simulation, each representing a water parti-
cle. Every timestep, we advect them through the velocity field by
∆t. Also, we store an enumeration value inside of each cell indi-
cating whether the cell contains liquid, air, or solid. Once a fluid
marker particle moves into a cell, we mark it as liquid. This is nec-
essary for our pressure solve. After each timestep, we can output
these particles to disk. However, the question remains as to how
to render these particles. One approach is to use a implicit surface
function to generate a water surface from these particles. We dis-
cuss this approach later, in section the section on surfacing SPH
simulations. Unfortunately, this approach can lead to blobby, ugly
surfaces. Therefore, we turn to a level-set based approach, first in-
troduced in [?].

Level set methods are currently the best way to achieve smooth
high quality free surfaces in liquid simulation. However, they are
far more computationally expensive than the above implicit surface
approach. Here we will present a brief introduction to these tech-
niques. We recommend that an interested reader refer to [Fedkiw
and Sethian 2002] for more detailed information.

For the level set method, we define a new value, φi,j,k, at the center
of all of our simulation cells. We define our liquid free surface to
exist at locations where the following equation is satisfied:

φ(~X) = 0 (33)

Where ~X is a position vector. Note that we can define Φ(~X) at non-
grid cell locations through any type of interpolation, either trilinear
or Catmull-Romm is a fine choice.

Furthermore, we say that locations that satisfy φ(~X) < 0 to be
inside of the water, and φ(~X) < 0 to be outside of the water. To
represent φ, we use a function called the signed distance function.

Given an arbitrary set S of ‖S‖ points, we define our signed dis-
tance function D(~X) as:

DS(~X) = min~p∈S‖ ~X − ~p‖ (34)

Clearly, for some arbitrary point ~X , the magnitude of the signed
distance is the distance to the nearest point in the set S. Signed
distance is also useful because of another property. If we want to
check whether a grid cell is inside or outside of the fluid, all we
must do is examine the sign of the signed distance.

Thus far we have ignored an important problem with signed dis-
tance: how to compute it. At the beginning of a simulation, we
can assume our signed distance function is already computed on
the grid.

There are many ways to calculate signed distance, and new
problem-specific techniques are developed frequently. Typically,
people classify these methods into two groups: PDE based ap-
proaches and Geometric Approaches. PDE Based techniques
approximate something called the Eikonal Equation, ‖∇φ‖ =
1. These techniques are mathematically and computationally in-
volved, and are often overkill for graphics work. Instead, we will
discuss briefly the geometric approaches. Our discussion will not
go into much depth; for a more in depth treatment of geometric
algorithms for computing signed distance see [?].

Our algorithms for computing signed distance take the following
general form:

1. Set the signed distance of each grid-point to ”unknown”

2. for each grid pointP directly at the free-surface, set the signed
distance to 0

3. Loop over each grid-point Gi,j,k at which signed distance is
unknown

Loop over each grid-point P that neighbors Gi,j,k as
long as the signed distance at P is known

Find the distance from Gi,j,k to the surface points.
If this distance is closer than P ’s signed distance, mark P as
unknown once again

Take the minimum value of the distances of the neigh-
bors, and determine if Gi,j,k is inside or outside, and set the
sign of the distance based on this

There are two main techniques for implementing such an algorithm.
These techniques are the fast marching method, and the fast sweep-
ing method.

The fast marching method loops over the closest grid points first,
and then those that are farther away. This technique works rapidly
by storing the unknown grid points in a priority queue data struc-
ture. This algorithm runs in O(nlog(n)) when the priority queue
is implemented with a heap. A detailed description can be found in
[Sethian 1999].

The other technique is the fast sweeping method. The fast sweeping
method takes the opposite approach from the fast marching method.
Here, we allow the signed distance function to first be calculated at
our farthest away points. We then have this information propagate
back towards the surface. Fast marching is great because it isO(n),
and is very simple. Furthermore, it works well with narrow band
methods, discussed in [Bridson 2009] and [Fedkiw et al. 2001a].

While we have discussed how to compute a signed distance func-
tion, we have not discussed how to update the signed distance as
the fluid’s free surface moves. While this may seem complicated,
this step is quite trivial. Since our φ values are stored in the cen-
ter of our grid cells, we can simply advect these values according
to the fluid’s velocity. However, it turns out that advection does
not perfectly preserve signed distance. Therefore, we periodically
recalculate our signed distance every few timesteps. Bridson rec-
comends that we recalculate our signed distance once per frame
(note that typically many timesteps of ∆t are required per frame)
[Bridson 2009].

TODO: Finish this section. I am still working on it since my level
set implementation is not complete.

5 Particle Based Simulation

5.1 Overview

In this section we describe an alternative approach to fluid simula-
tion. Here we discuss Lagrangian techniques. In this approach, we
have a set of discrete particles that move through space to represent
our fluid. We no longer simulate our fluid on a grid structure.

This approach has many pros and cons compared to grid based tech-
niques. In general, particle based approaches are less accurate than
their grid based counterparts. This is primarily due to the difficul-
ties in dealing with spatial derivatives on an unstructured particle
cloud. However, particle based simulations are typically much eas-
ier to program and understand. Furthermore, particle based tech-
niques are much faster, and can be used in real time applications
such as video games.

We will describe Smoothed Particle Hydrodynamics. This tech-
nique was originally introduced for astrophysical simulations[?],
but has also found a lot of uses in computer graphics [?]. This
description is especially valuable, since SPH is not discussed in
Bridson’s text[Bridson 2009], and crucial implementation details
are scattered through both astophyics, computational fluid dynam-
ics, and computer graphics literature.

Figure 5: Our Simple 2D SPH Implementation

5.2 Data Structures

First, we must outline what information we need to store for our
simulation. Clearly, we need a data structure to list all of our parti-
cles. Since particles must frequently be added to the simulation, we
will choose a linked list. However, the question remains as to what
information is stored in each particle.

Clearly, we need to store position, velocity, mass, density, and pres-
sure. It turns out to be useful to store color and a force vector as
well, so we will store these. We will refer to these quantities with
the following variables throughout our discussion:

• ~X Position

• ~V Velocity

• M Mass

• d Density

• ρ Pressure

• ~C =< Cred, Cgreen, Cblue > Color

• ~F Force

Note that for our color, each component of the color is ∈ [0, 1].
Each particle can be trivially implemented as a C structure. Nota-
tionally, we will refer to particles with the variable P , and individ-
ual particles using subscript notation. For instance, the i-th particle
would be Pi. Finally, we will refer to particle quantities in a similar
manner. For example, the mass of the 12th particle would be M12.

5.3 Algorithm

Our final goal is to satisfy the following condition:

For all particles Pi:

∂~V

∂t i
= ~Apressure

i + ~Aviscosity
i + ~Agravity

i + ~Aexternal
i (35)

Note that in this equation, ~Asomething
i refers to the acceleration

on particle i due to ”something.” Also, recall from basic physics
(F = M

A
) that Ai = Fi

Mi
.

In order for our simulation to progress, we need a way to calculate
fluid density at some arbitrary point.

Certain particle properties, such as mass, are given initial values
at the beginning of the simulation and are not expected to change.
However, other properties must be recalculated every step. Con-
sider the pressure property. Here is how to determine the new pres-
sure every time step:

However, we have a discrete cloud off particles, so we must use a
discrete summation to approximate this integral. This leads us to
the equation:

n∑
j 6=i

MjWRij (36)

Here, Rij is equal to the Euclidean distance between particle i and
particle j.

This function W (d) is known as a kernel function. This function
takes a single scalar parameter, which is a distance between two
particles, and returns a scalar ∈ [0, 1]. Typically, a kernel func-
tion maps particles that are farther away to values closer to 0. This
makes sense, since particles far away will not have a large influence
on a particle.

Once particles are far enough away from the source, the kernel
function drops to 0, and therefore these particles no longer have
to be considered. We will exploit this fact in a later section when
developing acceleration structures for SPH simulations.

The question of what kernel function is best is still a very open
research question. However, since our simulations are targeted at
begin visually pleasing, rather than scientifically accurate, we do
not care much about this. The following kernel function has been
used extensively in research and practical applications. This is the
Gaussian Kernel.

W (d) =
1

π
3
2 h3

exp(
r2

h2
) (37)

Here r is a the distance between two particles, h is our smoothing
width. Once particles are greater than distance 2h away, they will
no longer affect the particles in question. Clearly, larger values of
h will make for a more realistic simulation, albeit at the expense of
computational speed.

Finally, we present full psueo-code for an SPH simulation:

• Initialize all particles

• Set t = 0

• Choose a ∆t

• for i from 0 to n

for j from 1 to numparticles

Get list Lj of neighbors for Pj

Calculate Densityj for Pj using Lj

Calculate Pressurej for Pj using Lj

Calculate accelerationAj for Pj usingDensityj and
Pressurej

Move Pj using Aj and ∆t using Euler step

t = t+ ∆t

• Cleanup all data structures

• Exit

5.4 Acceleration Structures

As described above, there is a clear computational bottleneck in our
application. We must calculate interaction forces between each and
every particle. This is an O(n2) process, which is not computa-
tionally viable. By using spatial data structures, we can reduce our
computation time to O(n) in the typical case. In the worst case,
where all of the particles are in one cell, our algorithm still runs
O(n2) Advanced techniques using quadtrees in 2D, or octrees in
3D, can eliminate this possibility.

In addition to storing all of our particles in a linked list, we also
store them in a spatial grid data structure. Our grid cells extend
by a distance of R in each dimension. Therefore, in order to cal-
culate the forces on a particular particle, one must only examine
9 grid cells in the 2D case, or 27 grid cells in the 3D case. This
is because, for any grid cells far enough away, our kernel function
will evaluate to 0 and their contributions will not be included on the
current particle. In our experience, including this spatial grid can
decrease simulation time by over an order of magnitude for large
enough simulations.

However, the addition of this grid data structure requires additional
book-keeping during the simulation process. Whenever a particle
is moved, one must remove it from its current grid cell, and add it
to the grid cell it belongs in. Unfortunately, there is no way to do
this simulation in place, and one must maintain two copies of the
simulation grid.

Additionally, this fixed grid requires us to change our kernel func-
tion. Oftentimes, implementors in graphics define their kernel func-
tions using a piecewise function. If the particles are less than some
distance h apart, they evaluate some type of spline. If the particles
are farther away, the kernel instead evalutes to 0. However, more
advanced kernels exist for these types of simulations, and they have
recently been used with success in graphics. One of the most com-
mon advanced kernels is the cubic spline kernel.

Figure 6: Our 2D SPH Implementation with Lookup Grid

Finally, SPH can be further optimized in another way. SPH is
clearly very data parallel. Therefore, each particle can be simu-
lated in a separate thread with relative ease. Because of this, many
high performance SPH implementations are done on the GPU.

Figure 7: Raytraced GPU Based 3D SPH from University of Tokyo

5.5 Surface Tracking

At our current stage, all SPH results in is an unorganized point
cloud of fluid particles. This is unacceptable for most applications.
Usually the compuiter graphics practitioner desires a way to render
these fluids using a off-the-shelf 3D renderer. In this section, we
will outline a few techniques for transforming the result of our SPH
simulations into a renderable form.

T and probably the easiest technique, is to sample our SPH results
onto a uniform grid. Here we can step through the uniform grid
points, and sample the fluid density on these points. Then, we can
use this uniform grid as input to an application that performs iso-
surface volume rendering. Here we have a choice between direct
volume rendering, such as that presented in [Colin Braley 2009],
and marching cubes[Lorenson and Cline 1982]. Direct volume ren-
dering, typically done through volume raycasting, has the advan-
tage of speed. However, there is no easy way to integrate this result-
ing image with other generated images, and therefore this technique
is only suitable for creating previews. Marching cubes, on the other
hand, produces triangle meshes. These meshes are suitable for use
in a 3D animation program, and this is therefore a viable option for
final production.

While there are benefits to sampling our SPH onto a grid, there are
other techniques that often produce better results. Usually, these
techniques use a special function for each particle that, whe com-
bined with the other particles, produces a fluid surface.

The function usually used for this purpose was introduced by [Blinn
1982]. This technique is often referred to as meta-balls or blobbies
in the graphics community.

F (~X) = Σn
i k(
‖ ~X − ~xi‖

h
) (38)

Where h is a user specified parameter representing the smooth-
ness of the surface, and k is a kernel function like the one repre-
sented above. Incremenetal improvements have been made to the
the above function throughout the years, the most imporortant of
which is presetned in [Williams 2008].

Figure 8: Metaball Based Surface Reconstruction

5.6 Extensions

This document has only scratched the surface in discussing the cur-
rent state of the art fluid simulation techniques. For a thorough
explanation of grid based methods, see [Bridson 2009]. No com-
parable resource for SPH and particle based technique exists, but
the author recommends reading the papers of Nils Theurey, and
the SIGGRAPH 2006 Fluid Simulation Course Notes as a starting
point.

Other active areas of fluid simulation research in the graphics com-
munity include, smoke simulation, fire simulation, simulation of
highly viscous fluids, and coupled simulations. Coupled simula-
tions combine two or more simulations and get them to interact
plausibly. Recently, Ron Fedkiw’s group achieved 2-way coupled
SPH and grid based simulations in [?]. Furthermore, examples of
couplings with thin shells, rigid body simulations, soft body simu-
lations, and cloth simulations exist as well.

Figure 9: Two Way Coupled SPH and Grid Based Simulation by
Ron Fedkiw’s Group

Acknowledgments

Thanks to Robert Hagan for editing this work.

References

BATTY, C., AND BRIDSON, R. 2008. Accurate viscous free sur-
faces for buckling, coiling, and rotating liquids. In Proceedings
of the 2008 ACM/Eurographics Symposium on Computer Ani-
mation, 219–228.

BATTY, C., BERTAILS, F., AND BRIDSON, R. 2007. A fast varia-
tional framework for accurate solid-fluid coupling. ACM Trans.
Graph. 26, 3, 100.

BLINN, J. F. 1982. A generalization of algebraic surface drawing.
ACM Trans. Graph. 1, 3, 235–256.

BRIDSON, R. 2009. Fluid Simulation For Computer Graphics.
A.K Peters.

COLIN BRALEY, ROBERT HAGAN, Y. C. D. G. 2009. Gpu based
isosurface volume rendering using depth based coherence. Sig-
graph Asia Technical Sketches.

FEDKIW, R., AND SETHIAN, J. 2002. Level Set Methods for Dy-
namic and Implicit Surfaces.

FEDKIW, R., STAM, J., AND JENSEN, H. W. 2001. Visual sim-
ulation of smoke. In Proceedings of SIGGRAPH 2001, ACM
Press / ACM SIGGRAPH, E. Fiume, Ed., Computer Graphics
Proceedings, Annual Conference Series, ACM, 15–22.

FEDKIW, R., STAM, J., AND JENSEN, H. W., 2001. Visual simu-
lation of smoke.

FOSTER, N., AND FEDKIW, R. 2001. Practical animation of liq-
uids. In SIGGRAPH ’01: Proceedings of the 28th annual con-
ference on Computer graphics and interactive techniques, ACM
Press, New York, NY, USA, 23–30.

GOKTEKIN, T. G., BARGTEIL, A. W., AND O’BRIEN, J. F. 2004.
A method for animating viscoelastic fluids. ACM Transactions
on Graphics (Proc. of ACM SIGGRAPH 2004) 23, 3, 463–468.

GUENDELMAN, E., SELLE, A., LOSASSO, F., AND FEDKIW, R.
2005. Coupling water and smoke to thin deformable and rigid
shells. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers,
ACM, New York, NY, USA, 973–981.

HARLOW, F., AND WELCH, J., 1965. Numerical calculation of
time-dependent viscous incompressible flow of fluid with a free
surface. the physics of fluids 8.

HARLOW, F., AND WELCH, J., 1965. Numerical calculation of
time-dependent viscous incompressible flow of fluid with a free
surface. the physics of fluids 8.

HARLOW, F., AND WELCH, J., 1965. Numerical calculation of
time-dependent viscous incompressible flow of fluid with a free
surface. the physics of fluids 8.

LORENSON, AND CLINE. 1982. Marching cubes. ACM Trans.
Graph. 1, 3, 235–256.

PETER, M. C., MUCHA, P. J., BROOKS, R., III, V. H., AND
TURK, G., 2002. Melting and flowing.

PETER, M. C., MUCHA, P. J., AND TURK, G. 2004. Rigid fluid:
Animating the interplay between rigid bodies and fluid. In ACM
Trans. Graph, 377–384.

SETHIAN, J. A. 1999. Level Set Methods and Fast Marching Meth-
ods: Evolving Interfaces in Computational Geometry, Fluid Me-
chanics, Computer Vision, and Materials Science (Cambridge ...
on Applied and Computational Mathematics), 2 ed. Cambridge
University Press, June.

SHEWCHUK, J. R. 2007. Conjugate gradient without the agonizing
pain. Tech. rep., Carnegie Mellon.

STAM, J. 1999. Stable fluids. 121–128.

WILLIAMS, B. W. 2008. Fluid Surface Reconstruction from Par-
ticles. Master’s thesis, University of British Columbia.

